Lossy TimeSeries DataBase
Go to file
Peter J. Holzer 2e8641ad18 Smooth out old data to avoid false positives in disk full prediction 2023-08-18 21:07:57 +02:00
clients Backport to Python 3.6 2023-05-06 00:13:52 +02:00
doc Think about scheduling measurements and processing them 2022-11-27 10:19:37 +01:00
templates Display min, max and last value in description 2022-12-31 17:55:25 +01:00
test_data Rename data to test_data to prevent clash with live layout 2023-03-19 11:38:37 +01:00
tests Allow arbitrary number of stops 2023-03-19 11:34:38 +01:00
app.py Add new API endpoint /record as a (preferred) alias for /report 2023-01-07 12:55:21 +01:00
dashboard.py Allow arbitrary number of stops 2023-03-19 11:34:38 +01:00
ltsdb-json Maintain a single lossy timeseries (PoC) 2022-08-20 17:39:12 +02:00
ltsdb_json.py Keep min and max values of dropped data points 2023-01-05 15:14:28 +01:00
ltsdb_test Implement json prototype of LTsDb 2022-08-21 11:58:31 +02:00
predict_disk_full Use a lossy timeseries to predict when a filesystem will be full (PoC) 2022-08-20 17:40:16 +02:00
predict_disk_full_home_bytes Use a lossy timeseries to predict when a filesystem will be full (PoC) 2022-08-20 17:40:16 +02:00
predict_disk_full_var_bytes Use a lossy timeseries to predict when a filesystem will be full (PoC) 2022-08-20 17:40:16 +02:00
process_queue Smooth out old data to avoid false positives in disk full prediction 2023-08-18 21:07:57 +02:00
pyproject.toml Add test case 2023-02-04 12:43:04 +01:00
record_df Record disk usage in LTsDb 2022-08-21 12:00:07 +02:00
record_dus Be quiet(er) 2022-08-21 13:15:01 +02:00
requirements.txt Add gunicorn to requirements 2022-09-03 22:57:32 +02:00