ltsdb/app.py

225 lines
6.7 KiB
Python
Raw Normal View History

import fcntl
2022-09-02 18:41:19 +02:00
import hmac
2022-09-02 14:06:47 +02:00
import json
2022-09-02 18:41:19 +02:00
import logging
2022-12-11 22:57:41 +01:00
import logging.config
2022-09-02 18:41:19 +02:00
import os
2022-09-02 14:06:47 +02:00
2024-10-20 11:27:23 +02:00
from collections import defaultdict
from flask import (Flask, request, jsonify, abort, render_template, url_for)
2022-09-02 14:06:47 +02:00
from ltsdb_json import LTS
2022-12-27 10:29:49 +01:00
from dashboard import Dashboard
2022-09-02 14:06:47 +02:00
2022-12-11 22:57:41 +01:00
import config
logging.config.dictConfig(config.logging)
2022-09-02 14:06:47 +02:00
app = Flask(__name__)
log = logging.getLogger()
@app.route("/")
def home():
return jsonify({ "success": None })
@app.route("/report", methods=["POST"])
def report():
return record()
@app.route("/record", methods=["POST"])
def record():
2022-09-02 14:06:47 +02:00
data = request.get_json()
n_ts = 0
n_dp = 0
for d in data:
d["description"]["remote_addr"] = request.remote_addr
2022-09-02 18:41:19 +02:00
d["description"]["node"] = verify_node(d)
2022-09-02 14:06:47 +02:00
log.info("received %s", json.dumps(d))
ts = LTS(d["description"])
for dp in d["data"]:
ts.add(*dp)
ts.save()
n_dp += 1
n_ts += 1
return jsonify({ "success": True, "timeseries": n_ts, "datapoints": n_dp })
2022-09-02 18:41:19 +02:00
2022-09-04 17:58:17 +02:00
@app.route("/ts/<id>")
def get_timeseries(id):
2022-09-04 21:03:17 +02:00
try:
ts = LTS(id=id)
except FileNotFoundError:
abort(404)
2022-09-04 17:58:17 +02:00
return jsonify({"description": ts.description, "data": ts.data})
@app.route("/dimensions")
def list_dimensions():
with open("data/.index") as fh:
fcntl.flock(fh, fcntl.LOCK_SH)
index = json.load(fh)
# Just return the number of timeseries for each dimension/member, not
# the timeseries themselves
for d in index.keys():
for m in index[d].keys():
index[d][m] = len(index[d][m])
return jsonify(index)
@app.route("/search")
def search():
log.debug("search: %s", request.args)
2022-12-09 22:55:07 +01:00
return jsonify(_search())
def _search():
timeseries = None
with open("data/.index") as fh:
fcntl.flock(fh, fcntl.LOCK_SH)
index = json.load(fh)
for k, v in request.args.lists():
log.debug("search: %s -> %s", k, v)
2022-12-09 22:55:07 +01:00
if timeseries is None:
timeseries = set()
log.debug("search: %s: %s", k, index[k])
for m in v:
timeseries |= set(index[k][m])
else:
filter = set()
for m in v:
filter |= set(index[k][m])
timeseries &= filter
results = list(timeseries)
2022-12-09 22:55:07 +01:00
return results
2022-09-02 18:41:19 +02:00
def verify_node(d):
node = d["auth"]["node"]
timestamp = d["auth"]["timestamp"]
digest1 = d["auth"]["hmac"]
if "/" in node:
raise ValueError("invalid node name %s", node)
try:
fn = "config/" + node
log.info("getting client config from %s", fn)
with open(fn) as fh:
2022-09-02 18:41:19 +02:00
node_conf = json.load(fh)
except Exception as e:
log.warning("got %s opening %s", e, "config/" + node)
abort(401, "unknown client")
last = node_conf["last"]
for key in node_conf["keys"]:
msg = (node + " " + str(timestamp)).encode("UTF-8")
hmac2 = hmac.new(key.encode("UTF-8"), msg, "SHA256")
2022-09-02 18:41:19 +02:00
digest2 = hmac2.hexdigest()
if hmac.compare_digest(digest1, digest2):
if timestamp > node_conf["last"]:
node_conf["last"] = timestamp
os.replace("config/" + node, "config/" + node + ".old")
tmpfn = fn + "." + str(os.getpid())
oldfn = fn + ".old"
with open(tmpfn, "w") as fh:
2022-09-02 18:41:19 +02:00
json.dump(node_conf, fh) # XXX
try:
os.unlink(oldfn)
except FileNotFoundError:
pass
try:
os.link(fn, oldfn)
except FileNotFoundError:
pass
os.rename(tmpfn, fn)
2022-09-02 18:41:19 +02:00
return node
else:
abort(409, "timestamp out of sync")
abort(401, "auth failed")
2022-11-20 18:43:45 +01:00
@app.get("/v")
def visualize():
timeseries_ids = request.args.getlist("ts")
2022-12-09 22:55:07 +01:00
if not timeseries_ids:
timeseries_ids = _search()
log.debug("timeseries_ids = %s", timeseries_ids)
2022-11-20 18:43:45 +01:00
timeseries_data = []
for id in timeseries_ids:
ts = LTS(id=id)
timeseries_data.append(ts)
return render_template("visualize.html", ts=timeseries_data)
2022-12-27 10:29:49 +01:00
@app.get("/dashboard/")
def dashboard_index():
d = Dashboard("dashboards/" + "index" + ".json")
return d.as_html()
@app.get("/dashboard/<dashboard>")
def dashboard_file(dashboard):
d = Dashboard("dashboards/" + dashboard + ".json")
return d.as_html()
2024-10-20 11:27:23 +02:00
@app.get("/nav")
def nav():
# Start with a list of all dimensions, the number of matching time series
# and a truncated list of series.
# If a dimension is chosen, display a choice of members
# choosing one or more members goes back to the list of
# (remaining) dimensions
with open("data/.index") as fh:
fcntl.flock(fh, fcntl.LOCK_SH)
index = json.load(fh)
timeseries = None
for k, v in request.args.lists():
if k[0] == ".":
continue
log.debug("search: %s -> %s", k, v)
if timeseries is None:
timeseries = set()
log.debug("search: %s: %s", k, index[k])
for m in v:
timeseries |= set(index[k][m])
else:
filter = set()
for m in v:
filter |= set(index[k][m])
timeseries &= filter
if timeseries is None:
timeseries = set()
for mc in index.values():
for tsl in mc.values():
timeseries |= set(tsl)
if d := request.args.get(".m"):
members = []
for m, tsl in index[d].items():
if set(tsl) & timeseries:
members.append(m)
return render_template("nav_member_select.html", dimension=d, members=members)
else:
params = request.args.to_dict(flat=False)
matching_dimensions = defaultdict(int)
for d, mc in index.items():
if d in params:
continue
for m, tsl in mc.items():
mtsl = set(tsl) & timeseries
if mtsl:
matching_dimensions[d] += len(mtsl)
matching_dimensions_list = []
for d in matching_dimensions:
params[".m"] = d
url = url_for("nav", **params)
app.logger.debug(f"{d=} {url=}")
matching_dimensions_list.append(
{"name": d, "count": matching_dimensions[d], "url": url}
)
total_timeseries = len(timeseries)
timeseries = [LTS(id=ts) for ts in list(timeseries)[:100]]
return render_template(
"nav_dimension_list.html",
matching_dimensions=matching_dimensions_list,
timeseries=timeseries, total_timeseries=total_timeseries)
#