bayes/judge_message

96 lines
2.8 KiB
Plaintext
Raw Normal View History

#!/usr/bin/python3
import argparse
import email.parser
import email.policy
import os
import psycopg2
import psycopg2.extras as ppe
components = {}
def add_component(t, c):
if t not in components:
components[t] = []
components[t].append(c)
def add_message(msg):
for h in msg.items():
add_component(*h)
if msg.is_multipart():
for p in msg.get_payload():
add_message(p)
else:
if msg.get_content_maintype() == "text":
charset = msg.get_param("charset", "iso-8859-1")
add_component(
msg.get_content_subtype(),
msg.get_payload(decode=True)
.decode(charset, errors='replace'))
def extract_features():
db = psycopg2.connect("dbname=bayes")
csr = db.cursor(cursor_factory=ppe.DictCursor)
evidence = []
for t in components:
prev = {""}
length = 1
while prev:
current = set()
for c in components[t]:
for o in range(0, len(c) - length + 1):
f = c[o:o+length]
fp = f[:-1]
if fp in prev:
current.add(f)
# We keep only those as "prev" values which already existed
# in the database
prev = set()
if current:
q = "select * from features where type = %s and length = %s and feature in (" + ", ".join(("%s",) * len(current)) + ")"
q += " order by interesting desc nulls last"
csr.execute(q, (t, length, *current))
for i, r in enumerate(csr):
prev.add(r["feature"])
if i < 15 and r["interesting"]:
evidence.append(r)
length += 1
evidence = sorted(evidence, key=lambda x: -x["length"])
evidence = sorted(evidence, key=lambda x: -x["interesting"])
interesting_evidence = []
for e in evidence:
for i in interesting_evidence:
if e["type"] == i["type"] and e["feature"] in i["feature"]:
break
else:
interesting_evidence.append(e)
if len(interesting_evidence) >= 15:
break
p1 = 1
p2 = 1
for i in interesting_evidence:
print("#", i["spam_prob"], i["type"], i["feature"])
p1 *= i["spam_prob"]
p2 *= 1 - i["spam_prob"]
p = p1 / (p1 + p2)
return p
def main():
ap = argparse.ArgumentParser()
ap.add_argument('file', nargs='?')
args = ap.parse_args()
if args.file:
fh = open(args.file, "rb")
else:
fh = os.fdopen(0, "rb")
parser = email.parser.BytesParser(policy=email.policy.default)
msg = parser.parse(fh)
add_message(msg)
p = extract_features()
print(p, "spam" if p > 0.5 else "ham")
main()